跳至主要内容

Which One Is the Option for 5G Fronthaul? 10G, 25G or 100G?




5G is expected to be implemented in the following years. To have this 5G network realized, optical communication will be the cornerstone technology independent of various fronthaul options. The demand for high-rate optical transceivers will significantly increase because higher base-station density is required for the 5G network.

Although it is still not clearly determined which fronthaul architecture will be used in the 5G network, it is apparent that the network would employ both grey and color optics for 25Gbps based on 5G bandwidth requirement.

Grey and Color Optics

The light in WDM systems is carried over different wavelengths compliant with specific standards.

To distinguish wavelengths in different systems, the wavelengths in WDM systems are called colored light whereas the wavelengths in common optical systems are called grey light.

Grey light is within a certain wavelength range and does not have a standard wavelength, for example, the light at client-side optical ports of WDM devices.

Colored light is WDM-side optical signals of the OTN or line boards in a WDM system. The signals can be directly transmitted to multiplexer devices and have standard wavelengths.

Colored light is divided into CWDM and DWDM light, depending on wavelength division standards.

For 5G network, Gigalight has a complete portfolio of 10Gbps and 25Gbps optical transceivers that are tailored for upcoming standards such as eCPRI/NGFI as well as traditional CPRI options.

Gigalight 25G SFP28 transceivers also play in a critical role in the growing bandwidth demand in next generation access networks such as 5G wireless. While interface developments, like the recently released eCPRI specifications, will help improve bandwidth efficiency, the 5G wireless infrastructure will require significantly higher capacity in the optical links. Compact,  power and cost-efficient 25G transceivers supporting both Ethernet and CPRI-10 while exposed to the elements will play a key role in supporting the rollout of this next generation wireless infrastructure.

Conclusion

At present, 10G optical transceivers were mainly used in LTE base stations.  In the 5G network, it is expected that 25G and even 100G optical transceivers shall be the preferred solutions of the optical fronthaul network.

评论

此博客中的热门博文

QSFP-DD Might Be the Mainstream Form-factor of 400G Optical Transceivers

Time to enter 2019, when 400G has become a hot topic in the optical communications industry, the world's leading optical transceiver manufacturers have launched their own 400G optical modules. When we list the form-factors of these manufacturers' 400G optical modules (as shown in the figure below), we found that all the manufacturers except the Finisar (acquired by II-VI) have adopted the QSFP-DD form-factor — the market seems to have recognized QSFP-DD as the first choice for form-factors of 400G optical modules, though some manufacturers have also introduced 400G optical modules with OSFP and CFP8 form-factors. 400G Form-factors of Mainstream Optical Transceivers Manufacturers Tips:  QSFP-DD is a high-speed pluggable module form-factor defined by the QSFP-DD MSA group. "The QSFP-DD MSA group has defined the next generation, high-density, high-speed pluggable module form factor that addresses the industry need for high-density, high-speed networking solution...

What Kinds of Optical Module Are Required by 5G Fronthaul?

With the development of the optical communication industry and the improvement of the technology, the demand for bandwidth is increasing, the communication equipment manufacturers and operators will increase their investment in the optical communication network and equipment, thus driving the development of the optical module industry. The global optical module market keeps steady growth. According to Ovum's market share report, the communications market share is expected to grow in 2021. The global market for optical communications reached the US $10.1 billion in 2017 and has been growing rapidly. The market is expected to reach the US $16.6 billion by 2020, with a projected compound growth rate of 18 percent over the next three years. The development of optical communication technology cannot be separated from the milestone breakthrough of optoelectronic device technology. In the 1970s, the emergence of the semiconductor laser and low loss optical fiber unlock the doors of...

100G CFP-DCO Coherent Optical Transceiver for Long-Haul Transmission

The Gigalight 100G CFP-DCO digital coherent optical transceiver is a hot-pluggable CFP form-factor optical module designed for high-speed optical networking applications including 100-Gigabit Ethernet and OTU4. The CAUI and OTL4.10 electrical interface and MDIO management interface are built in the module. The 100G CFP-DCO module converts 10-lane 10Gb/s electrical data streams to 128G DP-QPSK optical output signal in Egress and also converts DP-QPSK optical input signals to 10-lane 10Gb/s electrical data streams in ingress. This 10-lane 10Gb/s electrical signal is fully compliant with 802.3ba CAUI specification and OIF-CEI-03.1 specification and allows FR4 host PCB trace up to 25cm. Features Operating optical data rate up to 128Gbps Transmission distance up to 2000km Low latency H-FEC/SD-FEC CFP MSA compliant IEEE 802.3ba MAC compliant OTU4 and 100GE compatible OTL4.10 and CAUI compatible Full C-Band 50GHz ITU-T transmitter Built-in Client and line OTN processing Hot-p...